Spatial overlap and competitive trophic interactions of unmarked and marked Chinook salmon during early marine residence

Elizabeth Daly¹, Richard Brodeur², Joseph Fisher¹, Laurie Weitkamp², David Teel³ and Brian Beckman4

${ }^{1}$ Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR
${ }^{2}$ Northwest Fisheries Science Center, Newport, OR
${ }^{3}$ NOAA Fisheries, Northwest Fisheries Science Center, Manchester, WA
${ }^{4}$ NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA

Objective: Are their differences

 between unmarked and hatchery fish in early marine residence? (May and June)- Physical characteristic (fork length and condition)
- Spatial overlap
- Diet overlap
- Feeding intensity (as \% of body weight)
- Growth (as measured by IGF-1, a hormone that correlates with recent growth)

Juvenile Columbia River Spring yearling Chinook salmon

-Juvenile

first year of life was in fresh water before smolting

Columbia River spring Chinook salmon:

5 distinct populations

 or ESUs:- Upper Columbia River spring (Endangered)
-Snake River spring
- Lower Columbia River
- Upper Willamette River
(Threatened)
-Mid-Columbia River spring (Not-listed)

Unmarked or Hatchery?

Salmon with adipose fin present, and No other form of marking (CWT, PIT, latex...) = UNMARKED
Unmarked=(Wild + non-marked Hatchery)

Hatcheries have variable marking rates

ANNUALLY 3Aathitlliominatal.5) Hatchery

Columbia River spring Chinook arereleased What is marting rate for our fish?
http://www.fpc.org/hatchery/Hatchery_Queries.html

Catch summary: 1999-2009 Spring Chinook $\mathrm{n}=2527$ unmarked + hatchery

Fork length (SD bars)

- Hatchery fish arenger than unmarked
- Mean hatchery fish length increased between May and June
- Mean unmarked fish length decreased between May and June

Condition Factor

($\mathrm{K}=\mathrm{W} / \mathrm{L}^{3}$)

June

19992000200120022003200420052006200720082009

May- almost all year there was no difference in condition factor between unmarked and hatchery

June- almost all years hatchery had significantly higher condition factor

Overlap in Distribution: 1999

Overlap in Distribution: 2009

Diets

Station by Station Diet Comparison 1999 as example

(minimum 3 unmarked and hatchery per station)

Ordination: station by station unmarked and hatchery diets

ANOSIM: (a multivariate test for sig. differences)
Unmarked diets were not significantly different from hatchery

$$
\text { May } p=0.32, \text { June } p=0.92
$$

Spatial and Diet overlap between unmarked and hatchery Chinook: PSI

Stomach fullness (\% of body weight): no significant differences

Significant negative correlation between FL and fullness ($p<0.001$)

Analysis of Covariance

$$
p=0.82
$$

Smaller fish have bigger stomachs relative to their body size

Recent growth was not different between unmarked and hatchery fish

$$
(F=0.972, P=0.325)
$$

Conclusions

Unmarked and hatchery Chinook salmon in coastal waters:

- High spatial and dietary overlap
- Hatchery fish are larger than unmarked fish
- No difference in feeding intensity or in recent growth

ACKNOWLEDGEMENTS

Thanks to all those who went to sea and helped processed data!

Funding: NOAA/NWFSC, BPA and Oregon State University

Bonneville

Hatchery fish: Percent empty stomachs and percent of total catch

Weight (grams)

June

- Hatchery are heavier than unmarked fish
- May to June increase (hatchery) and none for unmarked

Percent of spring Chinook: Unmarked

http://www.fpc.org/adultsalmon/adultqueries/Adult_Annual_Totals_Query
Results.asp

