Spatial overlap and competitive trophic interactions of unmarked and marked Chinook salmon during early marine residence

Elizabeth Daly¹, Richard Brodeur², Joseph Fisher¹, Laurie Weitkamp², David Teel³ and Brian Beckman⁴

¹Cooperative Institute for Marine Resources Studies, Oregon State University, Newport, OR

²Northwest Fisheries Science Center, Newport, OR ³NOAA Fisheries, Northwest Fisheries Science Center, Manchester, WA ⁴NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA

Objective: Are their differences between unmarked and hatchery fish in early marine residence? (May and June)

- Physical characteristic (fork length and condition)
- Spatial overlap
- Diet overlap
- Feeding intensity (as % of body weight)
- Growth (as measured by IGF-1, a hormone that correlates with recent growth)

Juvenile Columbia River Spring yearling Chinook salmon

Juvenile

first year of life was in fresh water before smolting

Columbia River spring Chinook salmon:

5 distinct populations or ESUs:

Upper Columbia River spring (Endangered)

Snake River spring

Lower Columbia River

Upper Willamette River (Threatened)

Mid-Columbia River spring (Not-listed)

Unmarked or Hatchery?

Salmon with adipose fin present, and **No** other form of marking (CWT, PIT, latex...) = **UNMARKED**

Unmarked=(Wild + non-marked Hatchery)

Hatcheries have variable marking rates

ANNUALLY 3 Hatchery

Columbia River spring Chinook are released

What is marking rate for our fish?

http://www.fpc.org/hatchery/Hatchery_Queries.html

Catch summary: 1999-2009 Spring Chinook n = 2527 unmarked + hatchery

	MAY				JUNE		
Year	Unmarked	Hatchery	% catch hatchery		Unmarked	Hatcher	% catch hatchery
1999	85	120	58.5		43	86	66.7
2000	29	54	65.1		12	15	55.6
2001	14	38	73.1		11	13	54.2
2002	13	94	87.9		19	45	70.3
2003	8	71	89.9		41	53	56.4
2004	4	63	94.0		13	21	61.8
2005		3		П	5	7	
2006	23	168	88.0		13	29	69.0
2007	28	188	87.0		6	41	87.2
2008	25	230	90.2		46	264	85.2
2009	29	354	92.4		27	76	73.8
Total	258	1383	82.6%		236	650	68.0%

Fork length (SD bars)

- Hatchery fish are longer than unmarked
- Mean hatchery fish length increased between May and June
- Mean unm
 árked fish length decreased between May and June

Condition Factor $(K = W/L^3)$

May- almost all year there was no difference in condition factor between unmarked and hatchery

June- almost all years hatchery had significantly higher condition factor

Overlap in Distribution: 1999

Overlap in Distribution: 2009

PSI= Percent similarity index

>60.0 % significant overlap

Diets

Percent weight of prey eaten

Hatchery

PSI = 60.3%

Station by Station Diet Comparison 1999 as example

(minimum 3 unmarked and hatchery per station)

Ordination: station by station unmarked and hatchery diets

ANOSIM: (a multivariate test for sig. differences)

Unmarked diets were not significantly different from hatchery

May p = 0.32, June p = 0.92

Spatial and Diet overlap between unmarked and hatchery Chinook: PSI

Stomach fullness (% of body weight): no significant differences

Significant negative correlation between FL and fullness (p<0.001)

Analysis of Covariance

$$p = 0.82$$

Smaller fish have bigger stomachs relative to their body size

Recent growth was not different between unmarked and hatchery fish

(F = 0.972, P = 0.325)

Conclusions Unmarked and hatchery Chinook salmon in coastal waters:

- High spatial and dietary overlap
- Hatchery fish are larger than unmarked fish
- No difference in feeding intensity or in recent growth

ACKNOWLEDGEMENTS

Thanks to all those who went to sea and helped processed data!

Funding: NOAA/NWFSC, BPA and Oregon State University

Hatchery fish: Percent empty stomachs and percent of total catch

Weight (grams)

- Hatchery are heavier than unmarked fish
- May to June increase (hatchery) and none for unmarked

Percent of spring Chinook: Unmarked

http://www.fpc.org/adultsalmon/adultqueries/Adult_Annual_Totals_Query Results.asp